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Master equation derivation of quantum regression theorem 

S Swain 
Department of Applied Mathematics and Theoretical Physics, Queen’s University Belfast, 
Belfast BT7 lNN, Northern Ireland 

Received 20 August 1980 

Abstract. The master equation approach is used to relate the calculation of correlation 
functions to the calculation of single-time expectation values. The quantum regression 
theorem is shown to result on neglecting a certain term. The properties of this neglected 
term are briefly discussed. 

In the calculation of averages of products of operators at two different times (cor- 
relation functions) in non-equilibrium situations, the quantum regression theorem 
plays an important role (Lax 1963,1968, Haken and Wiedlich 1967, and the references 
quoted therein). It was much used in the development of the theory of resonance 
fluorescence (Mollow 1969) and recently it was assumed in the master equation 
treatment of the interaction of quantum cystems with stochastic perturbations (Agarwal 
1979). Particular derivations for resonance fluorescence have been given by Mollow 
(1975a, b). In this paper we adopt a more general master equation approach and derive 
not only the quantum regression theorem but the corrections to it. These are briefly 
discussed. The basic idea of the quantum regression theorem is as follows. The 
correlation function (A(t’)B(t)), where A and B are quant-im mechanical operators and 
( . . , ) denotes the expectation value, may be written 

(1) 

(2) 

(3) 

(4) 

(A(t‘)B(t)) = Tr[p(O)A(t’)B(t)] = Tr[O(t, t’)B] 

n(t, t’) = U(t ,  t’)[p(t’)A]U-’(t, t ’ ) ,  

A(t)  = U-’(t, O)AU(t, 0), 

p ( t )  = U(t, O)P(o)U-%, 01, 

U(t,  t’) = exp[-iH(t - t’)]. 

where 

p ( t )  being the density matrix at time t and U(t,  t’) being the time development operator 

( 5 )  
H is the full Hamiltonian of the system, assumed to be time independent. Expression 
(1) is analogous to the expression for single-time expectation values, 

(B( t ) )  = Tr[p(t)BI (6) 

with p(t)  replaced by n(t, t’). Furthermore, it is obvious from (2) and (4) that p ( t )  and 
n(t, t’), regarded as functions of t, satisfy the same differential equation: 

idxldt = [H, XI, x = p ,  n. (7) 
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Thus if the equations of motion for the density matrix can be solved, then n(t, f’) can 
also be found, and two-time averages may be obtained from single-time averages. (For 
an example of the application of the theorem, see Mollow (1969).) 

Actually, the situation in practice is more complicated than this, because it is usually 
possible to split the whole system into a sub-system of interest (called henceforth simply 
the ‘system’, S) and a sub-system of secondary interest (the ‘reservoir’, R) with a 
corresponding decomposition of the Hamiltonian 

(8) H = (Hs + H R )  + H S R  E Ho + Hi,  

H1 = H S R  being the interaction between the system and the reservoir. It is then more 
convenient to work with the reduced density matrix for the system alone, p s :  

PS=TrR(p), P R  TrS(p), (9) 

where TrR denotes a trace over the variables of the reservoir and Trs a trace over the 
system variables. One cannot use the arguments of the second paragraph because ps 
does not satisfy an equation of the form (7). 

To find the equations satisfied by ps( t )  we briefly summarise the arguments of 
Zwanzig (1964). We introduce the projection operator, 

B p ~ ( 0 )  TrR (10) 

p1= Bp, pz = (1 - P)p. (1 1) 

and the quantities p1 and p2 obtained from p as follows: 

p s ( t )  may be obtained from p l ( t )  simply by tracing it over R: ps(t )  = TrRpl(f). The 
Laplace transform, p ( t ) ,  of p ( t ) ,  defined by 

satisfies the Laplace transform of equation (7): 

tp( t ) -p(O)=-iSp (13) 
where 2 p  = H p  -pH defines the Liouvillean operator 2. By acting on equation (13) 
with 9 and 1 - 9 one obtains the equations 

which have the formal solution 

On tracing this equation over R one obtains the equation satisfied by ps. 

the initial density matrix p ( 0 )  factorises: 
It is natural and customary to assume that if the interaction is ‘switched on’ at t = 0 

p(0)  = pS(0) PR(0); (17) 

p2(0 )  = (1 - 9 ) p  (0)  = p (0) -pR(o)pS(o) = 0. (18) 

it then follows that p2(0) = 0, since 



Derivation of quantum regression theorem 2579 

Thus the final term in equation (16) vanishes, and we obtain 

This is the desired equation for p ~ ( z ) .  For examples of its use see e.g. Swain (1980). 
Assuming that A and B are system operators only (this is natural as we have 

assumed S is the sub-system of principal interest) and noting that Tr = TrRTrS, one may 
write (6) and (1) as 

(B(t)) = TrS[(TrRPl(t))Bl, (20) 

(A(t’)B(t)) = TrS[(TrR%(t, t’))BI, (21) 

where n1(t, t’) is defined analogously to p l ( t ) :  0, =Pa. 

function (A(t’)B(t)) for the case t 2 t’. Then we assume 
To be definite, we assume that we are interested in evaluating the correlation 

n(t ,  t‘) = 0 for t < t’. (22) 

One may then define the Laplace transform n(z, t) analogously to equation (12), and 
repeat the steps leading to equation (16), when we obtain 

(1 -P )9 )n1( t ,  t’) = n,(t’, t’) +O(Z, t’) z + i(1- P ) 9  
( z  +iPz+p9 

where 

1 
z + i(1- 9)s @(z,  t’) = - i P 9  0 2 ( t ’ ,  t’) 

Thus n(t, t’) satisfies equation (23), which is formally identical to equation (19), apart 
from the final term, @(z,  t’). This term represents a driving force due to the perturbation 
of the reservoir by the system. When it can be neglected, the quantum regression 
theorem holds. 

We make the following comments. 
(1) Equation (23) is an exact relation: it is not necessary to invoke either the Born or 

Markov approximations or to make any assumptions about the form of the Hamiltonian 
(apart from time independence). 

(2) @(z,  t’) represents the difference of the expectation value of an operator taken 
with the exact density matrix p(t‘) and the ‘approximate’ density matrix pR(0)ps(t’). One 
therefore expects it to be small. In fact, Mollow (1969) in his original treatment of 
resonance fluorescence obtained the quantum regression theorem by assuming that the 
composite density matrix factorises for all time and that, when calculating system 
averages, the effect of the system on the reservoir density matrix is negligible. (Later 
papers (Mollow 1975a, b) gave a justification of this procedure for resonance fluores- 
cence.) These assumptions are equivalent to taking 

p(t’) =pR(O)pS(t’), all t’, (25) 

and it is evident from equation (24) that this is sufficient to cause the vanishing of 
@(z ,  t’). 
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(3) One can use equation (15) to set 

Inverting this, one obtains 
f ’  

p2 ( t ‘ )  = -i lo d7 e-i(1-q)2T P s p i ( f -  7) 

and thus one can express @(z,  t’) in terms of p s ( t ) ,  the system density matrix: 
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